Facet and Grouping

Here we show the learning curve from multiple methods, on the same domain.

We typically arrange the data with a folder structure f"{domain}/{method}/{seed}".

Initialize the loader

import os

from cmx import doc
import matplotlib.pyplot as plt
from matplotlib import ticker
from ml_logger import ML_Logger

loader = ML_Logger(root=os.getcwd(), prefix="data/walker-walk")

Check all the files

files = loader.glob(query="**/metrics.pkl", wd=".", recursive=True)
doc.print(files)
['soda/300/metrics.pkl', 'soda/400/metrics.pkl', 'soda/100/metrics.pkl', 'soda/200/metrics.pkl', 'pad/300/metrics.pkl', 'pad/400/metrics.pkl', 'pad/100/metrics.pkl', 'pad/200/metrics.pkl', 'curl/300/metrics.pkl', 'curl/400/metrics.pkl', 'curl/100/metrics.pkl', 'curl/200/metrics.pkl', 'rad/300/metrics.pkl', 'rad/400/metrics.pkl', 'rad/100/metrics.pkl', 'rad/200/metrics.pkl']

Plotting A Single Time Series

def group(xKey="step", yKey="train/episode_reward/mean", color=None, bins=50, label=None, dropna=False):
    avg, top, bottom, step = loader.read_metrics(f"{yKey}@mean", f"{yKey}@84%", f"{yKey}@16%", x_key=f"{xKey}@mean",
                                                 path="**/metrics.pkl", num_bins=bins, dropna=dropna)
    plt.plot(step, avg, color=color, label=label)
    plt.fill_between(step, bottom, top, alpha=0.15, color=color)

Step 2: Plot

colors = ['#49b8ff', '#444444', '#ff7575', '#66c56c', '#f4b247']

for method in ['curl', 'rad', 'pad']:
    plt.figure()

    with loader.Prefix(method):
        group(yKey="episode_reward/mean", bins=None, dropna=True, color=colors[0], label="Eval")
        group(yKey="train/episode_reward/mean", color=colors[1], label="Train")
        plt.gca().xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, _: f"{int(x / 1000)}k" if x else "0"))
        plt.legend(frameon=False)
        plt.ylim(0, 1000)

    r.savefig(f"figures/{method}/train_vs_eval.png", title=method.capitalize(), dpi=300, zoom="20%")

Curl

Rad

Pad

Last updated

Was this helpful?