Facet and Grouping
Here we show the learning curve from multiple methods, on the same domain.
We typically arrange the data with a folder structure f"{domain}/{method}/{seed}".
Initialize the loader
import os
from cmx import doc
import matplotlib.pyplot as plt
from matplotlib import ticker
from ml_logger import ML_Logger
loader = ML_Logger(root=os.getcwd(), prefix="data/walker-walk")Check all the files
files = loader.glob(query="**/metrics.pkl", wd=".", recursive=True)
doc.print(files)['soda/300/metrics.pkl', 'soda/400/metrics.pkl', 'soda/100/metrics.pkl', 'soda/200/metrics.pkl', 'pad/300/metrics.pkl', 'pad/400/metrics.pkl', 'pad/100/metrics.pkl', 'pad/200/metrics.pkl', 'curl/300/metrics.pkl', 'curl/400/metrics.pkl', 'curl/100/metrics.pkl', 'curl/200/metrics.pkl', 'rad/300/metrics.pkl', 'rad/400/metrics.pkl', 'rad/100/metrics.pkl', 'rad/200/metrics.pkl']Plotting A Single Time Series
def group(xKey="step", yKey="train/episode_reward/mean", color=None, bins=50, label=None, dropna=False):
avg, top, bottom, step = loader.read_metrics(f"{yKey}@mean", f"{yKey}@84%", f"{yKey}@16%", x_key=f"{xKey}@mean",
path="**/metrics.pkl", num_bins=bins, dropna=dropna)
plt.plot(step, avg, color=color, label=label)
plt.fill_between(step, bottom, top, alpha=0.15, color=color)Step 2: Plot
Curl
Rad
Pad



Last updated
Was this helpful?